PENINGKATAN KEMAMPUAN REPRESENTASI
MATEMATIS SISWA SMA MELALUI PEMECahan
MASALAH TRIGONOMETRI

Sari Sakti Setyo Rahayu, Aan Nurfarudianto, Ika Santia

Program Studi Pendidikan Sejarah, Fakultas Keguruan dan Ilmu Pendidikan,
Universitas Nusantara PGRI Kediri
sarisakti37@gmail.com

Abstrak
Penelitian ini dilatarbelakangi karena kemampuan representasi matematis siswa SMA. Disamping itu siswa masih kesulitan dalam memecahkan masalah matematis trigonometri. Analisis awal menyatakan siswa sering tidak akurat dalam mempresentasikan masalah soal pemecahan masalah trigonometri. Sehingga melalui pembelajaran pemecahan masalah siswa cilek kemampuan representasi matematis. Tujuan penelitian ini adalah (1) Untuk mengetahui kemampuan representasi matematis siswa SMA sebelum melalui pemecahan masalah trigonometri, (2) Untuk mengetahui kemampuan representasi matematis siswa SMA sesudah melalui pemecahan masalah trigonometri, (3) Untuk mengetahui adanya peningkatan kemampuan representasi matematis siswa SMA melalui pemecahan masalah trigonometri. Jenis penelitian yang digunakan adalah eksperimen dengan pendekatan penelitian kuantitatif. Variabel bebas pada penelitian ini adalah pembelajaran problem solving, sedangkan variabel terikatnya adalah kemampuan representasi matematis. Populasi dalam penelitian ini adalah siswa SMA. Teknik pengambilan sampel menggunakan teknik simple random sampling, yaitu kelas X-3. Teknik analisis data yang digunakan adalah uji statistika One Sampie T-Tes dan uji statistika Paired Sample T-Tes, dengan bantuan IBM SPSS Statistic 23. Hasil penelitian ini adalah (1) kemampuan representasi matematis siswa SMA sebelum melalui pemecahan masalah trigonometri kurang dari 75 (KKM). (2) kemampuan representasi matematis siswa SMA sesudah melalui pemecahan masalah trigonometri paling sedikit 75 (KKM), (3) ada peningkatan kemampuan representasi matematis siswa SMA melalui pemecahan masalah trigonometri secara signifikan.

Keywords: kemampuan representasi matematis, pemecahan masalah

PENDAHULUAN
Pembelajaran matematika sekolah tersebut memiliki dua fungsi, yaitu mengembangkan kemampuan mengkomunikasikan gagasan melalui model matematika dan membangun kecakapan matematika. Oleh karena itu kecakapan menggunakan berbagai simbol, grafik, tabel, diagram dalam merumuskan, menafsirkan, membuat model matematika untuk memperjelas masalah merupakan bagian penting dalam pembelajaran matematika (Santia, 2015:465-366).

Standar pembelajaran menurut National Council of Teachers of Mathematics (NCTM) (2000:29) sebagai,
"Standards are descriptions of what mathematics instruction should enable students to know and do. They specify the understanding, knowledge, and skills that student should acquire from prekindergarten through grade 12. The Content
Standards-Number and Operations, Algebra, Geometry, Measurement, and Data
Analysis and Probability explicitly describeth the content that students should learn. The Process Standards-Problem Solving, Reasoning and Proof, Communication, Connections, and Representasion-highlight ways of acquiring and using content knowledge.

Menurut Albert (dalam Ashari, 2017:1) representasi eksternal adalah representasi dimana kita dapat berkomunikasi secara mudah kepada orang lain dengan membuat tulisan (simbol tertulis), gambar, sketsa, geometri dan persamaan. Sedangkan, representasi internal adalah gambaran dalam mengkreasikan pemikiran kita terhadap objek dan proses matematika. Dengan demikian representasi internal tidak dapat diukur sedangkan representasi eksternal dapat diukur.

Tetapi pentingnya kemampuan representasi kontradiksi dengan kenyataannya bahwa kemampuan representasi matematis siswa lemah, disamping itu siswa kesulitan dalam memecahkan permasalahan.

Representasi masih terkait dengan pemecahan masalah memiliki keterkaitan yang erat seperti yang diungkapkan Jones (dalam Santia, 2015:367-368), “Empirical studies suggest that mathematics problem solving competency depend on one’s ability to think in term of different representational system during problem solving process”.

Keterkaitan ini terjadi saat siswa mengkonstruksi representasi yang tepat dengan permasalahan untuk memberi solusi yang tepat. Jadi dalam melakukan pemecahan masalah, diperlukan kemampuan seseorang untuk memahami permasalahan yang ada, mengukur kemampuan seseorang untuk memahami permasalahan yang diajukan. Hal tersebut menunjukkan bahwa kecakapan seseorang dalam mengubah suatu representasi ke representasi lainnya akan mempengaruhi kecakapannya dalam mencari solusi pemecahan masalah. Sehingga suatu masalah yang rumit dapat menjadi sederhana jika menggunakan masalah yang tepat.

Santia (2015:368) menyatakan pemecahan masalah matematika adalah suatu proses yang dilakukan siswa dalam menyelesaikan suatu masalah matematika dengan mengaplikasikan pengetahuan, keterampilan serta pemahaman yang dimiliki. Proses penyelesaian masalah ini meliputi: memahami masalah, merencanakan cara penyelesaian, melaksanakan rencana, dan melakukan pengecekan kembali terhadap semua langkah yang telah dikerjakan. Berpedoman pada tahap-tahap penyelesaian masalah yang dikemukakan Polya dan indikator representasi menurut Muzakir (dalam Santia, 2015) maka dapat disusun indikator representasi siswa dalam pemecahan masalah matematika adalah sebagai berikut:

<table>
<thead>
<tr>
<th>Indikator Representasi dalam Memecahkan Masalah Trigonometri</th>
<th>Tahap Pemecahan Polya</th>
</tr>
</thead>
<tbody>
<tr>
<td>o Menyajikan kembali data / informasi yang diketahui melalui gambar, teks tulis, kata-kata, atau notasi/simbol formal.</td>
<td>Memahami masalah</td>
</tr>
<tr>
<td>o Menentukan apa yang ditanyakan melalui teks tulis, kata-kata, atau notasi/simbol.</td>
<td>Merencanakan penyelesaian masalah</td>
</tr>
<tr>
<td>o Mengkonstruksi strategi penyelesaian yang akan ditempuh dari penyajian kembali data/informasi yang telah dilakukan menggunakan gambar, teks tulis, kata-kata, atau notasi/simbol formal.</td>
<td></td>
</tr>
<tr>
<td>o Membuat model matematika dengan representasi simbol formal atau ekspresi matematika dari rancangan strategi penyelesaian yang telah dibuat.</td>
<td></td>
</tr>
<tr>
<td>o Memanipulasi ekspresi matematika pada pemodelan yang memuat simbol dan formula matematika sesuai aturan sistem formal</td>
<td>Melaksanakan rencana penyelesaian masalah</td>
</tr>
<tr>
<td>o Menyatakan secara tertulis hubungan rencana pemecahan masalah yang telah dibuat dengan suatu konsep matematika tertentu</td>
<td></td>
</tr>
<tr>
<td>o Memaknai simbol/notasi yang digunakan serta menginterpretasikan hasil jawaban dari simbol formal ke dalam teks tulis atau kata-kata.</td>
<td>Melihat kembali penyelesaian masalah yang telah dilakukan</td>
</tr>
</tbody>
</table>

METODE PENELITIAN

Penelitian ini menggunakan pendekatan penelitian kuantitatif dengan metode penelitian eksperimen, sehingga pengolahan data yang terbentuk angka atau data kualitatif yang diangkakan (skoring), kemudian diolah menggunakan analisis statistic (Sugiyono, 2016:23).

Teknik analisis data yang digunakan adalah uji statistika *One Sample T-Tes* dan uji statistika *Paired Sample T-Tes*, dengan bantuan *IBM SPSS Statistic 23* dengan ketentuan, Jika $\text{Sig. (2-tailed)} < \alpha$ (0,05), maka H_0 ditolak dan H_1 diterima, atau sebaliknya.

HASIL DAN PEMBAHASAN

Berdasarkan pengujian hipotesis pertama menggunakan *One Sample T-Tes* untuk melihat bagaimana kemampuan representasi matematis sebelum pembelajaran, terlihat bahwa nilai signifikasi 5% diperoleh $\text{Sig. (2-tailed)} >$ taraf signifikasi 5%, yaitu 0,00 < 0,05. Sehingga H_0 ditolak, yaitu “Kemampuan representasi matematis siswa SMA sebelum melalui pemecahan masalah trigonometri kurang dari 75 (KKM)”.

Berdasarkan pengujian hipotesis kedua menggunakan *One Sample T-Tes* untuk melihat bagaimana kemampuan representasi matematis siswa sesudah pembelajaran, terlihat bahwa nilai signifikasi 5% diperoleh $\text{Sig. (2-tailed)} <$ taraf signifikasi 5%, yaitu 0,283 > 0,05. Sehingga H_0 diterima, yaitu “Kemampuan representasi matematis siswa SMA sesudah melalui pemecahan masalah trigonometri paling sedikit 75 (KKM)”.
Berdasarkan pengujian hipotesis ketiga menggunakan uji *Paired Sample T-Tes* untuk melihat adanya peningkatan kemampuan representasi matematis siswa SMA melalui pemecahan masalah trigonometri, terlihat bahwa nilai signifikasi 5% diperoleh *Sig. (2-tailed)* < taraf signifikasi 5%, yaitu 0,000 < 0,05. Sehingga *H₀* ditolak, yaitu “Ada peningkatan kemampuan representasi matematis siswa SMA melalui pemecahan masalah trigonometri”.

KESIMPULAN DAN SARAN
Berdasarkan hasil penelitian diatas, maka dapat disimpulkan sebagai berikut:
1. Kemampuan representasi matematis siswa SMA sebelum melalui pemecahan masalah trigonometri kurang dari 75 (KKM).
2. Kemampuan representasi matematis siswa SMA sesudah melalui pemecahan masalah trigonometri paling sedikit 75 (KKM).
3. Ada peningkatan kemampuan representasi matematis siswa SMA melalui pemecahan masalah trigonometri secara signifikan.

UCAPAN TERIMA KASIH
Terimakasih atas Bapak Aan Nurfahrudianto, S.Pd., M.Pd., dan Ibu Ika Santia, M.Pd., selaku dosen pembimbing yang telah memberikan bimbingan dan pengarahan kepada penulis sehingga dapat menyelesaikan dengan baik.

DAFTAR PUSTAKA